公式
1
反向行程问题公式
反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:
(速度和)×相遇(离)时间=相遇(离)路程
相遇(离)路程 ÷(速度和) =相遇(离)时间
相遇(离)路程÷相遇(离)时间 =速度和
2
相遇问题公式
相遇路程=速度和×相遇时间
相遇时间 =相遇路程÷速度和
速度和 =相遇路程 ÷相遇时间
3
工程问题公式
(1)一般公式:
工作效率× 工作时间=工作总量
工作总量÷ 工作时间=工作效率
工作总量÷ 工作效率=工作时间
(2)用假设工作总量为“1”的方法解工程问题的公式:
1÷工作时间 =单位时间内完成工作总量的几分之几
1÷单位时间能完成的几分之几 =工作时间
( 注意:用假设法解工程题,可任意假定工作总量。特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。)
4
利润与折扣公式
利润 =售价-成本
利润率=利润÷成本×100% =(售价÷成本 -1)×100%
涨跌金额 =本金×涨跌百分比
折扣 =实际售价÷原售价×100%(折扣<1)
利息 =本金×利率×时间
税后利息 =本金×利率×时间×(1 -20%)
5
简易方程知识点
(1)用字母表运算定律。
加法交换律:a+b=b +a
加法结合律:a +b +c =a +(b +c)
乘法交换律:a×b =b×a
乘法结合律:a×b×c =a×(b×c)
乘法分配律:(a±b)×c =a×c±b×c
(2)用字母表示计算公式。
长方形的周长公式:C =(a+b)×2
长方形的面积公式:S =ab
正方形的周长公式:C =4a
正方形的面积公式:S =a×a
(3)x 2 读作:x的平方,表示:两个x相乘。
2x表示:两个x相加,或者是2乘x。
(4)有关的概念。
含有未知数的等式称为方程。
使方程左右两边相等的未知数的值叫做方程的解。
求方程的解的过程叫做解方程。
(5)数量关系。
路程 =(速度)×(时间)
速度 =(路程)÷(时间)
时间 =(路程)÷(速度)
总价 =(单价)×(数量)
单价 =(总价)÷(数量)
数量 =(总价)÷(单价)
总产量 =(单产量)×(数量)
单产量 =(总产量)÷(数量)
工作总量 =(工作效率)×(工作时间)
工作效率 =(工作总量)÷(工作时间)
工作时间 =(工作总量)÷(工作效率)
大数 -小数 =相差数
大数 -相差数 =小数
小数+相差数 =大数
一倍量×倍数 =几倍量
几倍量÷倍数 =一倍量
几倍量÷一倍量 =倍数
被减数 =减数 +差
减数 =被减数 -差
加数 =和-另一个加数
被除数 =除数×商
除数 =被除数÷商
因数 =积÷另一个因数
试题
1.解下列方程。
(1)4x+12=60 (2)m+2m=96
(3)8x-x=147 (4)6y-4=44
(5)x-120=62 (6)x÷0.4=2.2
考查目的:考查学生根据等式的性质解方程的能力。
解析:根据“两边同时加上或减去同一个数,等式仍然成立”“等式两边同时乘或除以同一个数(除数不能为0),等式仍然成立”即可解方程。
(1)首先根据等式的性质,两边同时减去12,然后两边再同时除以4即可;
(2)首先化简,然后根据等式的性质,两边同时除以3即可;
(3)首先化简,然后根据等式的性质,两边同时除以7即可;
(4)根据等式的性质,两边同时加上4,然后再两边同时除以6即可;
(5)根据等式的性质,两边同时加上120即可;
(6)根据等式的性质,两边同时乘以0.4即可。
答案:
(1)x=12 (2)m=32
(3)x=21 (4)y=8
(5)x=182(6)x=0.88
2.如图:
求故事书的数量。
考查目的:考查学生理解、分析等量关系,并根据等量关系列方程解决问题的能力。
解析:根据线段图分析本题的等量关系:故事书的本数+文艺书的本数=180,文艺书的本数是故事书本数的4倍,据此可列方程进行解答。
解:设故事书有x本,则文艺书有4x本。
x+4x=180
5x=180
x=36
答:故事书有36本。
3.如图:
求y的长度。
考查目的:考查学生理解、分析等量关系,并根据等量关系列方程解决问题的能力。
解析:根据线段图,2y加上22.5等于4.5y,由此列方程为4.5y=2y+22.5。
解:4.5y=2y+22.5
2.5y=22.5
y=9
答:y的长度是9米。
4.应用题:
实验小学图书馆新买来绘本和文学书共1000本,买来的文学书比绘本数量的2倍少50本。两种书各买了多少本?
考查目的:考查学生理解、分析等量关系,并根据等量关系列方程解决问题的能力。
解析:根据题意,可得“绘本的数量+文学书的数量=1000”。
解:设绘本为x本,则文学书为(2x-50)本。
x+(2x-50)=1000
3x-50=1000
3x=1050
x=350
1000-350=650(本)
答:买来的绘本是350本,文学书是650本。
5.应用题:
商店运来24筐梨和40筐苹果,一共重3000千克,每筐梨重50千克,每筐苹果重多少千克?(用两种方法解答)
考查目的:本题主要考查学生运用不同方法解决问题的能力。
解:
方法一:设每筐苹果重x千克。
24×50+40x=3000
1200+40x=3000
40x=1800
x=45
方法二:先求梨的重量,再求苹果的重量,最后根据“每筐苹果重量=苹果总重量÷筐数”列式求解。
(3000-50×24)÷40
=(3000-1200)÷40
=1800÷40
=45(千克)
答:每筐苹果重45千克。
声明 本文素材来源于网络等,版权归相关权利人所有,转载请注明出处。