经济学分析:打车平台派单远的问题,全局最优与局部最优的矛盾

2019-09-12     eBOND

全局最优与局部最优有什么不同?

一些古典经济学家认为,追求个人利益的最大化,就能累加成群体利益的最大化。但保罗·萨缪尔森指出,这是“合成谬误”——误以为在局部成立的事,就能在全局成立。

举过一个例子:会场里一个观众站起来,他看得更清楚了,能推广到整体吗?当所有观众都站起来,那谁也看不清了,还更难受。

在运筹学领域,“贪心算法”寄希望于,通过每一步选择当前的最优,从而实现结局的最优。但这样做难免有急功近利、贪小失大的问题。

一个雪球,面对一条很陡很短的赛道和一条很缓很长的赛道,该怎么选?贪心算法会选择初期增长快的,然后早早陷入停滞。而巴菲特会说:人生就像滚雪球,重要的是发现很湿的雪和很长的坡。

人们渐渐发现,全局最优没那么容易,甚至总结出了一些经典有争议的模型:

公地悲剧

一块公有草地,人人有权利使用,却无人有义务维护,结局是什么呢?每个牧羊人都会带大群的羊来吃草(局部最优)——他们知道草地承受不住,就更不愿落后于人——最后公地不复存在(全局最劣),这就是“公地悲剧”。

公地悲剧有很多衍生情况,例如滥用抗生素:

“抗生素的有效性”是一块公共资源,自1928年发现青霉素以来,全人类都受益于此,但没人需要对这种有效性负责。

于是,为了一次治病效果好,很多人大剂量使用抗生素。可是这样做的人多了,就会产生耐药性强的超级细菌,令抗生素逐渐失效。

每年,中国生产并消耗着全球近一半的抗生素,虽然其中多半用于饲养禽畜,但这并不改变滥用催生超级细菌的事实。

除此之外,大到全球气候、海洋资源、生物多样性,小到人行道上的空间,都面临着公地悲剧的问题。

搭便车问题

公地悲剧稍作变化,就成了搭便车问题:当一个公共品不付钱也能用的时候,每个人都倾向于不付钱(局部最优),但所有人都不付钱的话,就没公共品可用了(全局最劣)。

相同的案例还有网贷征信:

一群网贷公司,为了提升风控水平、降低风控成本,决定共享用户的信用和借贷记录。然而,每一家都想着,我不用认真做征信,直接用平台上别人家的数据就好……结果就是互相坑队友,集中爆雷。

除此之外,大到联合国事务,小到团队作业,都少不了关于搭便车的争论。

囚徒困境

甲乙合伙作案,被警方抓获,但警方没有足够的证据指控,于是分开审讯两人。这时,甲乙的命运面临四种可能:

如果两人都不招供,各判1年;甲招供并检举对方,而乙沉默,则释放甲,判乙10年;甲沉默乙招供,则判甲10年,释放乙;如果甲乙都招供,各判5年。

不难看出,“无论对方招不招供,自己都招”对每个囚徒来说都是最有利的选择(局部最优),而双方都这样选,就会共同落入背叛结局(全局最劣)——这就是“囚徒困境”。

囚徒困境同样有很多衍生情况,例如企业价格战:

甲乙公司都不打价格战,则维持现状;甲打乙不打,甲会抢到更多的市场;甲不打乙打,乙会抢到更多的市场;甲乙都打,非但市场份额不变,双方的营收压力还大幅增加。

又如国家关税摩擦:

甲乙两国都不搞事情,好好开门做生意;甲打乙不打,甲国企业的竞争力增强;甲不打乙打,乙国企业的竞争力增强;甲乙都打,就是我们正在经历的事,中美贸易关系受损,各国经济也受影响。

人际关系、城际发展、国际政治、生物进化……随处可见囚徒困境的案例。

全局最优

那么,回到主题,全局最优是什么样呢?并不是所有场景都能实现全局最优,因为全局最优往往需要“上帝视角”和“顶层规划”。

往大里说,气候变化协定、关税贸易协定、央行征信系统、全民防疫计划、高铁航运规划就是追求全局最优;往小里说,打车软件的车辆调配方案就是追求全局最优。

很多人有过疑问,为什么明明附近有车,打车软件却要派一个远处的单?

打车软件本质上是一个协调者、撮合者,运用大数据算法和经济学规律,在高峰期尽量让更多乘客能打到车,让低谷期司机能够有单可接。

大数据算法意味着,让更多的人更快打到车,未必是个别用户打到最近的车,但所有人的整体等待时间缩短了。

经济学规律则意味着,通过分时计价等方式,平衡、撮合供需双方,实现市场均衡。

(如果您觉得文章对您有帮助,欢迎关注作者的微信ID:fcscfixedincome,订阅更多优质原创内容!)

文章来源: https://twgreatdaily.com/zh-hans/NKUcJ20BJleJMoPMD9Ah.html