Linux-3.14.12內存管理筆記「夥伴管理算法(4)」

2019-12-18     linux內核

此處承接前面未深入分析的頁面釋放部分,主要詳細分析夥伴管理算法中頁面釋放的實現。頁面釋放的函數入口是__free_page(),其實則是一個宏定義。

具體實現:

【file:/include/linux/gfp.h】#define __free_page(page) __free_pages((page), 0)

而__free_pages()的實現:

【file:/mm/page_alloc.c】void __free_pages(struct page *page, unsigned int order){    if (put_page_testzero(page)) {        if (order == 0)            free_hot_cold_page(page, 0);        else            __free_pages_ok(page, order);    }}

其中put_page_testzero()是對page結構的_count引用計數做原子減及測試,用於檢查內存頁面是否仍被使用,如果不再使用,則進行釋放。其中order表示頁面數量,如果釋放的是單頁,則會調用free_hot_cold_page()將頁面釋放至per-cpu page緩存中,而不是夥伴管理算法;真正的釋放至夥伴管理算法的是__free_pages_ok(),同時也是用於多個頁面釋放的情況。

此處接著則由free_hot_cold_page()開始分析:

【file:/mm/page_alloc.c】/* * Free a 0-order page * cold == 1 ? free a cold page : free a hot page */void free_hot_cold_page(struct page *page, int cold){    struct zone *zone = page_zone(page);    struct per_cpu_pages *pcp;    unsigned long flags;    int migratetype;     if (!free_pages_prepare(page, 0))        return;     migratetype = get_pageblock_migratetype(page);    set_freepage_migratetype(page, migratetype);    local_irq_save(flags);    __count_vm_event(PGFREE);     /*     * We only track unmovable, reclaimable and movable on pcp lists.     * Free ISOLATE pages back to the allocator because they are being     * offlined but treat RESERVE as movable pages so we can get those     * areas back if necessary. Otherwise, we may have to free     * excessively into the page allocator     */    if (migratetype >= MIGRATE_PCPTYPES) {        if (unlikely(is_migrate_isolate(migratetype))) {            free_one_page(zone, page, 0, migratetype);            goto out;        }        migratetype = MIGRATE_MOVABLE;    }     pcp = &this_cpu_ptr(zone->pageset)->pcp;    if (cold)        list_add_tail(&page->lru, &pcp->lists[migratetype]);    else        list_add(&page->lru, &pcp->lists[migratetype]);    pcp->count++;    if (pcp->count >= pcp->high) {        unsigned long batch = ACCESS_ONCE(pcp->batch);        free_pcppages_bulk(zone, batch, pcp);        pcp->count -= batch;    } out:    local_irq_restore(flags);}

先看一下free_pages_prepare()的實現:

【file:/mm/page_alloc.c】static bool free_pages_prepare(struct page *page, unsigned int order){    int i;    int bad = 0;     trace_mm_page_free(page, order);    kmemcheck_free_shadow(page, order);     if (PageAnon(page))        page->mapping = NULL;    for (i = 0; i < (1 << order); i++)        bad += free_pages_check(page + i);    if (bad)        return false;     if (!PageHighMem(page)) {        debug_check_no_locks_freed(page_address(page),                       PAGE_SIZE << order);        debug_check_no_obj_freed(page_address(page),                       PAGE_SIZE << order);    }    arch_free_page(page, order);    kernel_map_pages(page, 1 << order, 0);     return true;}

其中trace_mm_page_free()用於trace追蹤機制;而kmemcheck_free_shadow()用於內存檢測工具kmemcheck,如果未定義CONFIG_KMEMCHECK的情況下,它是一個空函數。接著後面的PageAnon()等都是用於檢查頁面狀態的情況,以判斷頁面是否允許釋放,避免錯誤釋放頁面。由此可知該函數主要作用是檢查和調試。

接著回到free_hot_cold_page()函數中,get_pageblock_migratetype()和set_freepage_migratetype()分別是獲取和設置頁面的遷移類型,即設置到page->index;local_irq_save()和末尾的local_irq_restore()則用於保存恢復中斷請求標識。

if (migratetype >= MIGRATE_PCPTYPES) {    if (unlikely(is_migrate_isolate(migratetype))) {        free_one_page(zone, page, 0, migratetype);        goto out;    }    migratetype = MIGRATE_MOVABLE;}

這裡面的MIGRATE_PCPTYPES用來表示每CPU頁框高速緩存的數據結構中的鍊表的遷移類型數目,如果某個頁面類型大於MIGRATE_PCPTYPES則表示其可掛到可移動列表中,如果遷移類型是MIGRATE_ISOLATE則直接將該其釋放到夥伴管理算法中。

末尾部分:

    pcp = &this_cpu_ptr(zone->pageset)->pcp;    if (cold)        list_add_tail(&page->lru, &pcp->lists[migratetype]);    else        list_add(&page->lru, &pcp->lists[migratetype]);    pcp->count++;    if (pcp->count >= pcp->high) {        unsigned long batch = ACCESS_ONCE(pcp->batch);        free_pcppages_bulk(zone, batch, pcp);        pcp->count -= batch;    }

其中pcp表示內存管理區的每CPU管理結構,cold表示冷熱頁面,如果是冷頁就將其掛接到對應遷移類型的鍊表尾,而若是熱頁則掛接到對應遷移類型的鍊表頭。其中if (pcp->count >= pcp->high)判斷值得注意,其用於如果釋放的頁面超過了每CPU緩存的最大頁面數時,則將其批量釋放至夥伴管理算法中,其中批量數為pcp->batch。

具體分析一下釋放至夥伴管理算法的實現free_pcppages_bulk():

【file:/mm/page_alloc.c】/* * Frees a number of pages from the PCP lists * Assumes all pages on list are in same zone, and of same order. * count is the number of pages to free. * * If the zone was previously in an "all pages pinned" state then look to * see if this freeing clears that state. * * And clear the zone's pages_scanned counter, to hold off the "all pages are * pinned" detection logic. */static void free_pcppages_bulk(struct zone *zone, int count,                    struct per_cpu_pages *pcp){    int migratetype = 0;    int batch_free = 0;    int to_free = count;     spin_lock(&zone->lock);    zone->pages_scanned = 0;     while (to_free) {        struct page *page;        struct list_head *list;         /*         * Remove pages from lists in a round-robin fashion. A         * batch_free count is maintained that is incremented when an         * empty list is encountered. This is so more pages are freed         * off fuller lists instead of spinning excessively around empty         * lists         */        do {            batch_free++;            if (++migratetype == MIGRATE_PCPTYPES)                migratetype = 0;            list = &pcp->lists[migratetype];        } while (list_empty(list));         /* This is the only non-empty list. Free them all. */        if (batch_free == MIGRATE_PCPTYPES)            batch_free = to_free;         do {            int mt; /* migratetype of the to-be-freed page */             page = list_entry(list->prev, struct page, lru);            /* must delete as __free_one_page list manipulates */            list_del(&page->lru);            mt = get_freepage_migratetype(page);            /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */            __free_one_page(page, zone, 0, mt);            trace_mm_page_pcpu_drain(page, 0, mt);            if (likely(!is_migrate_isolate_page(page))) {                __mod_zone_page_state(zone, NR_FREE_PAGES, 1);                if (is_migrate_cma(mt))                    __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);            }        } while (--to_free && --batch_free && !list_empty(list));    }    spin_unlock(&zone->lock);}

裡面while大循環用於計數釋放指定批量數的頁面。其中釋放方式是先自MIGRATE_UNMOVABLE遷移類型起(止於MIGRATE_PCPTYPES遷移類型),遍歷各個鍊表統計其鍊表中頁面數:

do {    batch_free++;    if (++migratetype == MIGRATE_PCPTYPES)        migratetype = 0;    list = &pcp->lists[migratetype];} while (list_empty(list));

如果只有MIGRATE_PCPTYPES遷移類型的鍊表為非空鍊表,則全部頁面將從該鍊表中釋放。

後面的do{}while()裡面,其先將頁面從lru鍊表中去除,然後獲取頁面的遷移類型,通過__free_one_page()釋放頁面,最後使用__mod_zone_page_state()修改管理區的狀態值。

著重分析一下__free_one_page()的實現:

【file:/mm/page_alloc.c】/* * Freeing function for a buddy system allocator. * * The concept of a buddy system is to maintain direct-mapped table * (containing bit values) for memory blocks of various "orders". * The bottom level table contains the map for the smallest allocatable * units of memory (here, pages), and each level above it describes * pairs of units from the levels below, hence, "buddies". * At a high level, all that happens here is marking the table entry * at the bottom level available, and propagating the changes upward * as necessary, plus some accounting needed to play nicely with other * parts of the VM system. * At each level, we keep a list of pages, which are heads of continuous * free pages of length of (1 << order) and marked with _mapcount * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) * field. * So when we are allocating or freeing one, we can derive the state of the * other. That is, if we allocate a small block, and both were * free, the remainder of the region must be split into blocks. * If a block is freed, and its buddy is also free, then this * triggers coalescing into a block of larger size. * * -- nyc */ static inline void __free_one_page(struct page *page,        struct zone *zone, unsigned int order,        int migratetype){    unsigned long page_idx;    unsigned long combined_idx;    unsigned long uninitialized_var(buddy_idx);    struct page *buddy;     VM_BUG_ON(!zone_is_initialized(zone));     if (unlikely(PageCompound(page)))        if (unlikely(destroy_compound_page(page, order)))            return;     VM_BUG_ON(migratetype == -1);     page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);     VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);    VM_BUG_ON_PAGE(bad_range(zone, page), page);     while (order < MAX_ORDER-1) {        buddy_idx = __find_buddy_index(page_idx, order);        buddy = page + (buddy_idx - page_idx);        if (!page_is_buddy(page, buddy, order))            break;        /*         * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,         * merge with it and move up one order.         */        if (page_is_guard(buddy)) {            clear_page_guard_flag(buddy);            set_page_private(page, 0);            __mod_zone_freepage_state(zone, 1 << order,                          migratetype);        } else {            list_del(&buddy->lru);            zone->free_area[order].nr_free--;            rmv_page_order(buddy);        }        combined_idx = buddy_idx & page_idx;        page = page + (combined_idx - page_idx);        page_idx = combined_idx;        order++;    }    set_page_order(page, order);     /*     * If this is not the largest possible page, check if the buddy     * of the next-highest order is free. If it is, it's possible     * that pages are being freed that will coalesce soon. In case,     * that is happening, add the free page to the tail of the list     * so it's less likely to be used soon and more likely to be merged     * as a higher order page     */    if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {        struct page *higher_page, *higher_buddy;        combined_idx = buddy_idx & page_idx;        higher_page = page + (combined_idx - page_idx);        buddy_idx = __find_buddy_index(combined_idx, order + 1);        higher_buddy = higher_page + (buddy_idx - combined_idx);        if (page_is_buddy(higher_page, higher_buddy, order + 1)) {            list_add_tail(&page->lru,                &zone->free_area[order].free_list[migratetype]);            goto out;        }    }     list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);out:    zone->free_area[order].nr_free++;}

於while (order < MAX_ORDER-1)前面主要是對釋放的頁面進行檢查校驗操作。而while循環內,通過__find_buddy_index()獲取與當前釋放的頁面處於同一階的夥伴頁面索引值,同時藉此索引值計算出夥伴頁面地址,並做夥伴頁面檢查以確定其是否可以合併,若否則退出;接著if (page_is_guard(buddy))用於對頁面的debug_flags成員做檢查,由於未配置CONFIG_DEBUG_PAGEALLOC,page_is_guard()固定返回false;則剩下的操作主要就是將頁面從分配鏈中摘除,同時將頁面合併並將其處於的階提升一級。

退出while循環後,通過set_page_order()設置頁面最終可合併成為的管理階。最後判斷當前合併的頁面是否為最大階,否則將頁面放至夥伴管理鍊表的末尾,避免其過早被分配,得以機會進一步與高階頁面進行合併。末了,將最後的掛入的階的空閒計數加1。

至此夥伴管理算法的頁面釋放完畢。

而__free_pages_ok()的頁面釋放實現調用棧則是:

__free_pages_ok()—>free_one_page()—>__free_one_page()

殊途同歸,最終還是__free_one_page()來釋放,具體的過程就不再仔細分析了。

文章來源: https://twgreatdaily.com/zh-mo/VLLGGm8BMH2_cNUgiN08.html