嘉宾| 高磊、平野,贾志鹏
策划|薛梁
审校|何逸灿
诸多新技术范式的出现正在重塑 AI 大模型应用的落地路径,大模型在推动企业向全面数智化转型的同时,也在对以往的 AI 应用开发与运维流程产生深远影响。当大模型爆红之初惊喜又兴奋的心情平复下来时,AI 大模型落地行业场景时的诸多挑战逐一浮出水面。
各行各业如何面对大模型应用探索中的新挑战?对于金融行业等数据密集、对产出结果精确度有很高要求的产业,或是要求严谨专业的物流与供应链领域而言,大模型应用如何平稳走进业务场景?下一步,AI 大模型该如何结合行业特点、满足行业要求,向行业垂直领域大模型发展?
在日前的《超级连麦. 数智大脑》x ArchSummit直播节目上,顺丰科技运筹优化算法总工程师高磊、天弘基金人工智能部负责人平野、Fabarta 高级技术专家贾志鹏就这些问题展开了深度探讨。
以下内容根据对话整理,篇幅有删减,点击“阅读原文”可观看直播回放
大模型应用现状简介
高磊:平野老师曾经在支付宝第五代智能风控引擎 Alpharisk 的开发中发挥了重要作用,能否分享一些 AI 和大模型在智能风控领域的技术创新和实践经验?目前,天弘基金在大模型领域又有哪些探索?
平野:在支付宝支付风控部门任职期间,我参与了风控引擎架构的转型建设。最初,风控引擎的设计主要依赖于策略,当时大约 70% 以上的风险防控措施都是基于策略的。制定策略时先由专业分析师根据具体场景构建特征,再通过这些特征组合成策略进行风险管理。
随着时间的推移,支付宝开始探索以 AI 模型替代人工的策略,在 2017 年至 2019 年这一早期阶段,尽管全球成功的 AI 风控案例并不多,我们仍坚持在 AI 风控领域不断探索和创新。风控引擎架构从传统的策略开始,逐渐过渡到一些机器学习模型,最终逐步引入了更高级的技术,如图神经网络和深度神经网络。我们还设计了高性能的分布式支付决策链路,显著提升了风控效率。
在 AI 应用方面,我们进行了多项独特创新,包括基于 MOE 的多任务学习框架,并针对具体场景进行了创新。此外,我们还开发了图算法和可信网络等技术,这些技术在支付宝的风险防控中发挥了重要作用。
Alpharisk 作为支付宝风控引擎的核心组件,经过数次迭代,已发展至第五代,其智能化水平显著提升。从风险感知、决策到结果演化,这一系列决策过程现在主要都由模型自动完成。目前,约 90% 的风险防控场景均利用模型来实现高效运作。
高磊:阿里巴巴开发的大模型通义千问非常强大,支付宝在这方面是否有过合作?
平野:在天虹基金大模型项目进行的过程中,我们曾经考虑过与第三方厂商合作,或者直接调用一些行业领先的大模型 API 来实现我们的目标。然而,我们很快意识到,金融业务场景对数据的准确性和专业性有着极高的要求。这一行业特点使我们不得不面临两点问题:
基于这些考虑,我们决定主要通过自主研发来完成大模型项目,以更好地满足我们的业务需求。
高磊:贾老师在 Fabarta 担任高级技术专家,曾在 IBM、阿里云、HSBC 等公司从事金融、制造和汽车等行业的业务解决方案咨询与实施工作,能不能从您的角度介绍一下,大模型技术在这些不同领域的应用现状,主要能解决哪些业务问题?不同行业之间存在哪些独特挑战?
贾志鹏:在公司成立之后,我们为多家企业提供了解决方案服务。这些服务包括针对不同行业设计定制化的解决方案,如金融、制造和医疗等行业。在这一过程中,我们注意到不同企业对大型 AI 模型(大模型)抱有多种期待。根据我们的经验,可以将这些期待大致分为以下三类。
高磊:我在顺丰集团负责智慧供应链的建设工作。在公司内部,我们正在探索大模型技术在物流和供应链领域的应用。我们正在构建基于开源模型的“丰语”大模型,该模型专注于物流供应链领域的专业知识。依托此模型,我们尝试了多种应用,主要分为三大领域: