1591年,韦达出版了他的代数学专著《分析方法入门》,这是历史上第一部符号代数学。它明确了“类的算术”和“数的算术”的区别,即代数与算术的分界线。
据载,韦达还以他精湛的数学知识,为国家赢得了荣誉。当时,比利时有一位数学家,名叫罗梅纽斯,深受国王推崇,国民也深感自豪和骄傲。
一次,比利时的大使向法国国王亨利四世夸口道:“你们法国还没有一个数学家能解开我国数学家罗梅纽斯的一个关于45次方程的求根问题。”
原来,这道45次方程是罗梅纽斯于1573年在他的《数学思想》一书提出来的。面对比利时的挑战,亨利四世决定在国内挑选数学家来解开此题,以长国威。
谁知找了不少数学教授都找不到答案,国王心里十分烦闷,如同丧权辱国一般。一天,国王将此题给韦达看,韦达说:“一个相当简单的问题,我马上就能给出正确答案。”
因为韦达看出,这个方程是依赖于sin45θ与sinθ之间的关系,所以几分钟内就求出了两个根。国王见了答案,高兴地说道:“韦达是我国乃至全世界最伟大的数学家。”接着便赏给韦达500法郎。
韦达生前写出不少著作,但多数没有出版发行。有一部《论方程的整理与修改》,是在他去世12年后才出版的。在书中,韦达把5次以内的多项式系数表示成其根的对称函数。
他还提出了4个定理,清楚地说明了方程的根与其各项系数之间的关系——即韦达定理。此定理至今仍在使用。他还为一元三次方程、四次方提供了可靠的解法,为后来利用高等函数求解高次代数方程开辟了新的道路。
另外,韦达利用欧几里得的《几何原本》第一个提出了无穷等比级数的求和公式,发现了正切定律、正弦差公式、纯角球面三角形的余弦定理等。
韦达利用代数法分析几何问题的思想,正是后来的数学家笛卡尔解析几何思想的出发点。笛卡尔说他是继承韦达的事业。直到1646年,韦达死后的40多年之后,他的全部著作才由荷兰数学家范·施库腾等人整理成书,名为《韦达全集》。