對於大多數高中生而言,想必高中數學科目是最大難題,尤其是函數部分,想要在高考中拿到理想的分數,尤其是衝刺145+,有時僅僅靠個人的苦學死學是遠遠不夠的,還要掌握一定的解題和應試技巧,只要合理運用,一定會成功迎戰未來的高考。
提高高中數學學習成績的關鍵:初中學生學數學,靠的是一個字:練!高中學生學數學,靠的也是一個字:悟!下面學長給大家歸類了6個答題型,只要把這些掌握了,高考絕對拿高分!
一、三角函數題
注意歸一公式、誘導公式的正確性【轉化成同名同角三角函數時,套用歸一公式、誘導公式(奇變、偶不變;符號看象限)時,很容易因為粗心,導致錯誤!一著不慎,滿盤皆輸!】。
二、數列題
1、證明一個數列是等差(等比)數列時,最後下結論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數列;
2、最後一問證明不等式成立時,如果一端是常數,另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數學歸納法,用數學歸納法時,當n=k+1時,一定利用上n=k時的假設,否則不正確。利用上假設後,如何把當前的式子轉化到目標式子,一般進行適當的放縮,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時一定寫上綜上:由得證;
3、證明不等式時,有時構造函數,利用函數單調性很簡單(所以要有構造函數的意識)。
三、立體幾何題
1、證明線面位置關係,一般不需要去建系,更簡單;
2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,最好要建系;
3、注意向量所成的角的餘弦值(範圍)與所求角的餘弦值(範圍)的關係(符號問題、鈍角、銳角問題)。
四、機率問題
1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數;
2、搞清是什麼機率模型,套用哪個公式;
3、記准均值、方差、標準差公式;
4、求機率時,正難則反(根據p1+p2+...+pn=1);
5、注意計數時利用列舉、樹圖等基本方法;
6、注意放回抽樣,不放回抽樣;
7、注意「零散的」的知識點(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透;
8、注意條件機率公式;
9、注意平均分組、不完全平均分組問題。
五、圓錐曲線問題
1、注意求軌跡方程時,從三種曲線(橢圓、雙曲線、拋物線)著想,橢圓考得最多,方法上有直接法、定義法、交軌法、參數法、待定係數法;
2、注意直線的設法(法1分有斜率,沒斜率;法2設x=my+b(斜率不為零時),知道弦中點時,往往用點差法);注意判別式;注意韋達定理;注意弦長公式;注意自變量的取值範圍等等;
3、戰術上整體思路要保7分,爭9分,想12分。
六、導數、值、不等式恆成立問題
1、先求函數的定義域,正確求出導數,特別是復合函數的導數,單調區間一般不能並,用「和」或「,」隔開(知函數求單調區間,不帶等號;知單調性,求參數範圍,帶等號);
2、注意最後一問有應用前面結論的意識;
3、注意分論討論的思想;
4、不等式問題有構造函數的意識;
5、恆成立問題(分離常數法、利用函數圖像與根的分布法、求函數最值法);
6、整體思路上保6分,爭10分,想14分。
這六類題型是高考中最常考的,也是高中生最易出錯的!高三生一定要在高考前掌握住!
學長整理了一些高考考點,由於篇幅受限,這裡只展示部分,需要全部電子資料的同學,私信【數學考點】,即可免費領取全部電子版資料!