普通差速器由行星齒輪、行星輪架(差速器殼)、半軸齒輪等組成

2019-05-29     美麗的女工程師芸倩

普通差速器由行星齒輪、行星輪架(差速器殼)、半軸齒輪等零件組成。發動機的動力經傳動軸進入差速器,直接驅動行星輪架,再由行星輪帶動左、右兩條半軸,分別驅動左、右車輪。差速器的設計要求滿足:(左半軸轉速)+(右半軸轉速)=2(行星輪架轉速)。當汽車直行時,左、右車輪與行星輪架三者的轉速相等處於平衡狀態,而在汽車轉彎時三者平衡狀態被破壞,導致內側輪轉速減小,外側輪轉速增加。

原理

差速器的這種調整是自動的,這裡涉及到「最小能耗原理」,也就是地球上所有物體都傾向於耗能最小的狀態。例如把一粒豆子放進一個碗內,豆子會自動停留在碗底而絕不會停留在碗壁,因為碗底是能量最低的位置(位能),它自動選擇靜止(動能最小)而不會不斷運動。同樣的道理,車輪在轉彎時也會自動趨向能耗最低的狀態,自動地按照轉彎半徑調整左右輪的轉速。

三維效果

當轉彎時,由於外側輪有滑拖的現象,內側輪有滑轉的現象,兩個驅動輪此時就會產生兩個方向相反的附加力,由於「最小能耗原理」,必然導致兩邊車輪的轉速不同,從而破壞了三者的平衡關係,並通過半軸反映到半軸齒輪上,迫使行星齒輪產生自轉,使內側半軸轉速減慢,外側半軸轉速加快,從而實現兩邊車輪轉速的差異。

驅動橋兩側的驅動輪若用一根整軸剛性連接,則兩輪只能以相同的角度旋轉。這樣,當汽車轉向行駛時,由於外側車輪要比內側車輪移過的距離大,將使外側車輪在滾動的同時產生滑拖,而內側車輪在滾動的同時產生滑轉。即使是汽車直線行駛,也會因路面不平或雖然路面平直但輪胎滾動半徑不等(輪胎製造誤差、磨損不同、受載不均或氣壓不等)而引起車輪的滑動。

差速器原理圖

車輪滑動時不僅加劇輪胎磨損、增加功率和燃料消耗,還會使汽車轉向困難、制動性能變差。為使車輪儘可能不發生滑動,在結構上必須保證各車輪能以不同的角度轉動。

軸間:通常從動車輪用軸承支承在主軸上,使之能以任何角度旋轉,而驅動車輪分別與兩根半軸剛性連接,在兩根半軸之間裝有差速器。這種差速器又稱為軸間差速器。

多軸驅動的越野汽車,為使各驅動橋能以不同角速度旋轉,以消除各橋上驅動輪的滑動,有的在兩驅動橋之間裝有軸間差速器。

作用

汽車轉彎時,內側車輪和外側車輪的轉彎半徑不同,外側車輪的轉彎半徑要大於內側車輪的轉彎半徑,這就要求在轉彎時外側車輪的轉速要高於內側車輪的轉速。差速器的作用就是滿足汽車轉彎時兩側車輪轉速不同的要求!這個作用是差速器最基本的作用,至於後為發展的什麼中央差速器、防滑差速器、LSD差速器、托森差速器等,他們是為了提高汽車的行駛性能、操控性能而設計的。

功能

汽車在拐彎時車輪的軌線是圓弧,如果汽車向左轉彎,圓弧的中心點在左側,在相同的時間裡,右側輪子走的弧線比左側輪子長,為了平衡這個差異,就要左邊輪子慢一點,右邊輪子快一點,用不同的轉速來彌補距離的差異。

如果後輪軸做成一個整體,就無法做到兩側輪子的轉速差異,也就是做不到自動調整。為了解決這個問題,早在一百年前,法國雷諾汽車公司的創始人路易斯·雷諾就設計出了差速器這個東西。[3]

分類

現代汽車上的差速器通常按其工作特性分為齒輪式差速器和防滑差速器兩大類。

齒輪式差速器

由於結構原因,這種差速器分配給左右輪的轉矩相等。這種差速器轉矩均分特性能滿足汽車在良好路面上正常行駛。但當汽車在壞路上行駛時,卻嚴重影響通過能力。例如當汽車的一個驅動輪陷入泥濘路面時,雖然另一驅動輪在良好路面上,汽車卻往往不能前進(俗稱打滑)。此時在泥濘路面上的驅動輪原地滑轉,在良好路面上的車輪卻靜止不動。這是因為在泥濘路面上的車輪與路面之間的附著力較小,路面只能通過此輪對半軸作用較小的反作用力矩,因此差速器分配給此輪的轉矩也較小,儘管另一驅動輪與良好路面間的附著力較大,但因平均分配轉矩的特點,使這一驅動輪也只能分到與滑轉驅動輪等量的轉矩,以致驅動力不足以克服行駛阻力,汽車不能前進,而動力則消耗在滑轉驅動輪上。此時加大油門不僅不能使汽車前進,反而浪費燃油,加速機件磨損,尤其使輪胎磨損加劇。有效的解決辦法是:挖掉滑轉驅動輪下的稀泥或在此輪下墊干土、碎石、樹枝、乾草等。

防滑差速器

為提高汽車在壞路上的通過能力,某些越野汽車及高級轎車上裝置防滑差速器。防滑差速器的特點是,當一側驅動輪在壞路上滑轉時,能使大部分甚至全部轉矩傳給在良好路面上的驅動輪,以充分利用這一驅動輪的附著力來產生足夠的驅動力,使汽車順利起步或繼續行駛。為實現上述要求,最簡單的方法是在對稱式錐齒輪差速器上設置差速鎖,使之成為強制止鎖式差速器。當一側驅動輪滑轉時,可利用差速鎖使差速器鎖死而不起差速作用。

防滑差速器能夠克服普通錐齒輪式差速器因轉矩平均分配給左、右輪而帶來的在壞路面(泥濘、冰雪路面等)上行駛時,因一側驅動輪接觸泥濘、冰雪路面而在原地打滑(滑轉),另一側在好路面上的驅動輪卻處在不動狀態使汽車通過能力降低的缺點。這是因為與泥濘、冰雪路面接觸的驅動輪與路面的附著力減少,路面對半軸作用有很小的反作用轉矩,結合對稱式錐齒輪差速器具有轉矩平均分配的特點,這使處在好路面上的驅動輪所得到的轉矩只能與處於坏路面上的驅動輪轉矩相等,於是兩者的合力不足以克服行駛阻力,汽車便停止不動。

根據結構特點不同,防滑差速器有強制鎖止式、高摩擦式和自由輪式3種。其中,高摩擦式中又有摩擦片式自鎖差速器、托森差速器、蝸輪式差速器、滑塊凸輪式差速器和粘性聯軸器式差速器5種。

」托森「差速器是美國格里森公司生產的轉矩感應式差速器,即差速器可以根據其內部差動轉矩的大小而決定是否限制差速器的差速作用。在結構上巧妙地利用渦輪蝸杆傳動的不可逆原理而設計。作為一種新型差速機構,托森差速器以其獨特的優越性能在各種汽車上得到廣泛應用。[4]

雙蝸杆差速器

共7張

雙蝸杆差速器

雙蝸杆差速器是2014年國內新發明的產品,特點是將兩個相互嚙合的蝸杆傾斜安裝於轉子中,兩個蝸杆軸端分別與兩側的輸出軸相連接,連接可用齒輪連接或萬向節連接,齒圈安裝於轉子上,整體由軸承固定於殼體,動力源由齒圈輸入,兩側輸出軸輸出動力。

兩個蝸杆採用小的導程角,導程角的大小決定自鎖的程度,蝸杆與渦輪傳動中,都是蝸杆主動,渦輪從動,兩個蝸杆相嚙合,相當於都是彼此的渦輪一樣,導程角小到一定程度時,兩個蝸杆會產生互鎖,只有兩側同時施加扭力時才能轉動,所以這就是能自鎖的原因,而又不影響差速行駛。

若用在中央差速器,兩個蝸杆節圓直徑調整,可使前後輸出不同的扭矩,就像托森差速器那樣前後動力40:60分配。

優點是體積小,加工簡單,成本低,全面解決全時四驅。

LSD系統

說起AWD轎車驅動系統人們不能不想到奧迪Quattro,正是奧迪的大膽創新並義無反顧才使得越來越多的人們享受到AWD帶來的駕駛樂趣,而奧迪Quattro AWD的核心正是Torsen LSD差速器系統,誰能想到電子部件橫行的今天它還保持著機械的清純。Torsen托森B型差速器

每輛汽車都要配備有差速器,我們知道普通差速器的作用:第一,它是一組減速齒輪,使從變速箱輸出的高轉速轉化為正常車速;第二,可以使左右驅動輪速度不同,也就是在彎道時對里外車輪輸出不同的轉速以保持平衡。它的缺陷是在經過濕滑路面時就會因打滑失去牽引力。而如果給差速器增加限滑功能就能滿足轎車在惡劣路面具有良好操控性的需求了,這就是限滑差速器(Limited Slip Differential,簡稱LSD)。全輪驅動轎車AWD系統的基本構成是具有3個差速器,它們分別控制著前輪、後輪、前後驅動軸扭矩分配。這3個差速器不只是人們常見的簡單差速器,它們是LSD差速器,帶有自鎖功能以保證在濕滑路面輪胎髮生打滑時驅動輪始終保持有充足的扭矩輸出從而在惡劣路況獲得良好的操控。世界上的LSD差速器有好幾種形式,今天我們就來看看Torsen自鎖差速器系統。

Torsen這個名字的由來取自Torque-sensing Traction——感覺扭矩牽引,連品牌名稱都是從牽引力控制中得來的,夠專業吧!

Torsen核心系統

在彎道行駛沒有車輪打滑時,前、後差速器的作用是傳統差速器,蝸杆齒輪不影響半軸輸出速度的不同。如車向左轉時,右側車輪比差速器快,而左側速度低,左右速度不同的蝸輪能夠嚴密地匹配同步嚙合齒輪。此時蝸輪蝸杆並沒有鎖止,因為扭矩是從蝸輪到蝸杆齒輪,這一方向動力傳輸暢通無阻。

Haldex多片離合中央差速器

當左側車輪出現打滑時,傳統差速器將會把動力傳輸到左輪,使發動機動力再大也只能白白消耗。而托森差速器就不同了,此時快速旋轉的左側半軸將驅動左側蝸杆,並通過同步嚙合齒輪驅動右側蝸杆。

Torsen差速器用在全時四驅系統上,牽引力被分配到了每個車輪,於是就有了良好的彎道、干/濕路面駕駛性能。托森中央差速器確保了前後輪均一的動力分配。如輪胎遇到冰面等摩擦力缺失的路面時,系統會快速做出反應,大部分的扭矩會轉向轉速慢的車輪,也就是還有抓地力的車輪。

托森差速器的鎖止介入沒有時間上的延遲,也不會消耗總扭矩數值的大小,它沒有傳統鎖止差速器所配備的多片式離合器,磨損非常小,可以實現免維護。

除了本身性能上的優勢,托森差速器還具備其他方面的優勢,比如它可以與很多常用變速器、分動器實現匹配,與車輛上ABS、TCS、ESP等電子設備共容,相輔相成的為整車安全和操控服務。

文章來源: https://twgreatdaily.com/zh-mo/oOjwD2wBmyVoG_1ZREL9.html