轉載自:接地氣學堂
我們也許經常會聽到「搭建運營分析體系、搭建業績監控體系、搭建商品分析體系」等等要求,可到底數據分析體系是什麼?到底怎樣才算是建了個體系?今天我們系統地解釋一下。
搭建數據分析體系,是從初級數據分析向高級發展的必備一環,數據分析本質是為業務服務的。所以,在搭建數據分析體系時,要先問自己:
這就是搭建數據分析體系的基本思路
企業有部門分工,因此第一步要認準:我在為哪個部門服務。這非常關鍵!
因為即使同一個問題,不同的部門的關注點會不同。同樣是銷售問題,如果是銷售部看,關注的是每一支銷售隊伍完成率、進度、質量。如果是供應鏈看,那關注的就是總量、各產品數量、需求高峰期。如果是風控看,那關注的就是回款、壞帳、套利。認清部門,有利於了解真正需求點。
其次,部門內有職級高低,要具體區分:誰需要看報表,他的責任與關注點是什麼。同樣是銷售,部門領導關注的是下屬隊伍的排兵布陣,重點在什麼區域,主打什麼產品。每一個銷售人員,關注的是要跟進哪個客人、跟進哪一步、見人說什麼。一般來說,越是管理層就越關注策略問題,越是基層就越關注執行問題。
即使有些看起來一個人也能辦的事,在企業里也有分工合作。比如公眾號發文章,似乎一個人就能寫,可在企業場景里,人家有專業的名字叫:新媒體運營。也有細緻的工作分工。
第二步:明確工作目標
清晰了人以後,要認清每個人的工作目標。
後續評價工作的好壞,判斷業務走勢正常還是異常,探索解決問題的辦法,都是從計算目標和現狀的差距開始的。這一點非常非常重要。很多做數據的同學陷入細節,做的報表看不出所以然,都是因為壓根不知道到底數值是幾才算好導致的。
業務目標並不都是「1個億小目標」這種簡單粗暴的形式。細分之下,可以有多種類型,比如常見的:
繼續拿新媒體運營舉例,一個小組,可能同時背著多個目標:
有了清晰的責任人、目標,就可以跟蹤業務走勢。在跟蹤的時候,首先關注的是:目標達成情況。
對於目標達成率監督,涉及到後續一系列行動判斷,遇事先判斷輕重緩急,再看細節(如下圖)。
很多基於傳統企業場景的數據分析體系,寫到這就結束了。請注意,做到這一步只能算完成了「數據監督體系」的建設。因為僅僅看目標數量和完成率,是知其然、不知其所以然的狀態。我們並不能回答:為什麼做的不好?該改善什麼?這種問題。想要回答的更細,就得深入的業務過程中,了解具體行動。
想要改善一個業務,就必須了解這個業務。
大部分的業務比我們想像的要複雜。比如新媒體運營,不做的同學可能想當然的認為:不就是寫個文章嗎?我看閱讀數、轉發數這些數據不就好了……可實際上,細看之下,一篇文章可能有很多業務細節(如下圖):
了解業務行動,分解業務細節,是為了:找到數據可以幫助的點。數據不是萬能的,比如一個新媒體小哥寫文章,數據不能只告訴他怎麼寫。但是具體到業務細節,數據可以提供很多參考,如下圖所示:
這一步,是提升數據分析質量的關鍵。拆解業務行動,找到數據的幫助點,我們就能在跟蹤進度的時候,進一步分析問題,這就推動到了一下步。
對業務行動細節很了解,就能復盤行動結果,總結經驗。數據的優勢,不是直接生產出超人的創意,而是事後總結出普遍的經驗。優秀的業務能力永遠是稀缺資源,是不可複製的。但通過數據分析復盤,可以把明顯的作死行為總結出來,避免普通人犯錯。
就像寫文案,指望每個創作者都成為半佛仙人這種聖手是不可能的,但是能總結出:
分析結論,就已經能幫助運營規避大量坑點。即使偶爾采坑失敗,也敗的明白:「沒辦法了,必須這個點發文,虧一點閱讀就虧一點」。做業務從來不怕失敗,怕的是敗的不明不白。如果能長期積累,業務方經驗越來越豐富,遇到問題的思路也越來越清晰了,就真正發揮了數據的作用。但是,問題不是一成不變的,因此數據分析體系也要不斷疊代升級。
牢記這個標準:堅守目標,疊代方法,積累經驗。這是數據分析體系建設的基本方法,底線,也是最高要求。在這個原則下,數據分析體系疊代升級路線如下圖所示:
這樣的體系運作,業務部門也很輕鬆:平時只要看幾個核心KPI達成率即可,平安無事就不用擔心,趨勢向壞的時候能及時收到預警。想要思路,也能有足夠素材用,使用體驗非常爽。而數據分析師本身,固定KPI、業務支持做成數據產品,個案分析做專題。產品和專題做多了,也好體現個人成績。總比無休無止寫sql,寫了也不知道幹啥去了強的多。
建設數據分析體系,本質是個:從業務中來,到業務中去的事。需要大家多在內部花心思。然而,很多新手太過糾結理論、方法、模型,忽視、無視、輕視業務。覺得別人的工作沒技術含量「不就是發個文章」「不就是忽悠客戶」,只有自己的算法才是真牛逼無雙。遇到問題,不會細緻的和業務溝通,只會上各個數據分析微信群問:「有沒有XX指標體系啊,最好是權威、標準、BAT認定版的」。這就南轅北轍了,最後只會換來一句:你這不符合我們公司情況啊。
好的數據分析師,要像眼科醫生一樣。配眼鏡可能有很多專業的方法,有很多專業的工具,可在配的過程中,卻醫生糾結的不是自己的理論,而是關注用戶看的清不清楚,不斷問用戶「這樣可以嗎?這樣更清楚嗎?再這樣試試呢?」用專業的方法服務個性化需求,這才是專業的人乾的事。與大家共勉。