照片由 Clem Onojeghuo 發布在 Unsplash 上面
作者 | Pier Paolo Ippolito
翻譯 | Skura編輯 | 唐里
原文標題:Feature Selection Techniques
原文連結:https://towardsdatascience.com/feature-selection-techniques-1bfab5fe0784
據《福布斯》報道,每天大約會有 250 萬位元組的數據被產生。然後,可以使用數據科學和機器學習技術對這些數據進行分析,以便提供分析和作出預測。儘管在大多數情況下,在開始任何統計分析之前,需要先對最初收集的數據進行預處理。有許多不同的原因導致需要進行預處理分析,例如:
收集的數據格式不對(如 SQL 資料庫、JSON、CSV 等)
缺失值和異常值
標準化
減少數據集中存在的固有噪聲(部分存儲數據可能已損壞)
數據集中的某些功能可能無法收集任何信息以供分析
在本文中,我將介紹如何使用 python 減少 kaggle Mushroom Classification 數據集中的特性數量。本文中使用的所有代碼在 kaggle 和我的 github 帳號上都有。
減少統計分析期間要使用的特徵的數量可能會帶來一些好處,例如:
提高精度
降低過擬合風險
加快訓練速度
改進數據可視化
增加我們模型的可解釋性
事實上,統計上證明,當執行機器學習任務時,存在針對每個特定任務應該使用的最佳數量的特徵(圖 1)。如果添加的特徵比必要的特徵多,那麼我們的模型性能將下降(因為添加了噪聲)。真正的挑戰是找出哪些特徵是最佳的使用特徵(這實際上取決於我們提供的數據量和我們正在努力實現的任務的複雜性)。這就是特徵選擇技術能夠幫到我們的地方!
圖 1:分類器性能和維度之間的關係
1、特徵選擇
有許多不同的方法可用於特徵選擇。其中最重要的是:
1)過濾方法=過濾我們的數據集,只取包含所有相關特徵的子集(例如,使用 Pearson 相關的相關矩陣)。
2)遵循過濾方法的相同目標,但使用機器學習模型作為其評估標準(例如,向前/向後/雙向/遞歸特徵消除)。我們將一些特徵輸入機器學習模型,評估它們的性能,然後決定是否添加或刪除特徵以提高精度。因此,這種方法可以比濾波更精確,但計算成本更高。
3)嵌入方法。與過濾方法一樣,嵌入方法也使用機器學習模型。這兩種方法的區別在於,嵌入的方法檢查 ML 模型的不同訓練疊代,然後根據每個特徵對 ML 模型訓練的貢獻程度對每個特徵的重要性進行排序。
圖 2:過濾器、包裝器和嵌入式方法表示 [3]
2、實踐
在本文中,我將使用 Mushroom Classification 數據集,通過查看給定的特徵來嘗試預測蘑菇是否有毒。在這樣做的同時,我們將嘗試不同的特徵消除技術,看看它們會如何影響訓練時間和模型整體的精度。
首先,我們需要導入所有必需的庫。
我們將在本例中使用的數據集如下圖所示。
圖 3:Mushroom Classification 數據集
在將這些數據輸入機器學習模型之前,我決定對所有分類變量進行 one hot 編碼,將數據分為特徵(x)和標籤(y),最後在訓練集和測試集中進行。
X = df.drop(['class'], axis = 1)
Y = df['class']
X = pd.get_dummies(X, prefix_sep='_')
Y = LabelEncoder.fit_transform(Y)
X2 = StandardScaler.fit_transform(X)
X_Train, X_Test, Y_Train, Y_Test = train_test_split(X2, Y, test_size = 0.30, random_state = 101)
3、特徵重要性
基於集合的決策樹模型(如隨機森林)可以用來對不同特徵的重要性進行排序。了解我們的模型最重要的特徵對於理解我們的模型如何做出預測(使其更易於解釋)是至關重要的。同時,我們可以去掉那些對我們的模型沒有任何好處的特徵。
start = time.process_time
trainedforest = RandomForestClassifier(n_estimators=700).fit(X_Train,Y_Train)
print(time.process_time - start)
predictionforest = trainedforest.predict(X_Test)
print(confusion_matrix(Y_Test,predictionforest))
print(classification_report(Y_Test,predictionforest))
如下圖所示,使用所有特徵訓練一個隨機森林分類器,在大約 2.2 秒的訓練時間內獲得 100% 的準確率。在下面的每個示例中,每個模型的訓練時間都將列印在每個片段的第一行,供你參考。
一旦我們的隨機森林分類器得到訓練,我們就可以創建一個特徵重要性圖,看看哪些特徵對我們的模型預測來說是最重要的(圖 4)。在本例中,下面只顯示了前 7 個特性。
figure(num=None, figsize=(20, 22), dpi=80, facecolor='w', edgecolor='k')
feat_importances = pd.Series(trainedforest.feature_importances_, index= X.columns)
feat_importances.nlargest(7).plot(kind='barh')
圖 4:特徵重要性圖
現在我們知道了哪些特徵被我們的隨機森林認為是最重要的,我們可以嘗試使用前 3 個來訓練我們的模型。
X_Reduced = X[['odor_n','odor_f', 'gill-size_n','gill-size_b']]
X_Reduced = StandardScaler.fit_transform(X_Reduced)
X_Train2, X_Test2, Y_Train2, Y_Test2 = train_test_split(X_Reduced, Y, test_size = 0.30, random_state = 101)
start = time.process_time
trainedforest = RandomForestClassifier(n_estimators=700).fit(X_Train2,Y_Train2)
print(time.process_time - start)
predictionforest = trainedforest.predict(X_Test2)
print(confusion_matrix(Y_Test2,predictionforest))
print(classification_report(Y_Test2,predictionforest))
正如我們在下面看到的,僅僅使用 3 個特徵,只會導致準確率下降 0.03%,訓練時間減少一半。
我們還可以通過可視化一個訓練過的決策樹來理解如何進行特徵選擇。
start = time.process_time
trainedtree = tree.DecisionTreeClassifier.fit(X_Train, Y_Train)
print(time.process_time - start)
predictionstree = trainedtree.predict(X_Test)
print(confusion_matrix(Y_Test,predictionstree))
print(classification_report(Y_Test,predictionstree))
樹結構頂部的特徵是我們的模型為了執行分類而保留的最重要的特徵。因此,只選擇頂部的前幾個特徵,而放棄其他特徵,可能創建一個準確度非常可觀的模型。
import graphviz
from sklearn.tree import DecisionTreeClassifier, export_graphviz
data = export_graphviz(trainedtree,out_file=None,feature_names= X.columns,
class_names=['edible', 'poisonous'],
filled=True, rounded=True,
max_depth=2,
special_characters=True)
graph = graphviz.Source(data)
graph
圖 5:決策樹可視化
4、遞歸特徵消除(RFE)
遞歸特徵消除(RFE)將機器學習模型的實例和要使用的最終期望特徵數作為輸入。然後,它遞歸地減少要使用的特徵的數量,採用的方法是使用機器學習模型精度作為度量對它們進行排序。
創建一個 for 循環,其中輸入特徵的數量是我們的變量,這樣就可以通過跟蹤在每個循環疊代中註冊的精度,找出我們的模型所需的最佳特徵數量。使用 RFE 支持方法,我們可以找出被評估為最重要的特徵的名稱(rfe.support 返回一個布爾列表,其中 true 表示一個特徵被視為重要,false 表示一個特徵不重要)。
from sklearn.feature_selection import RFE
model = RandomForestClassifier(n_estimators=700)
rfe = RFE(model, 4)
start = time.process_time
RFE_X_Train = rfe.fit_transform(X_Train,Y_Train)
RFE_X_Test = rfe.transform(X_Test)
rfe = rfe.fit(RFE_X_Train,Y_Train)
print(time.process_time - start)
print("Overall Accuracy using RFE: ", rfe.score(RFE_X_Test,Y_Test))
5、SelecFromModel
selectfrommodel 是另一種 scikit 學習方法,可用於特徵選擇。此方法可用於具有 coef 或 feature 重要性屬性的所有不同類型的 scikit 學習模型(擬合後)。與 rfe 相比,selectfrommodel 是一個不太可靠的解決方案。實際上,selectfrommodel 只是根據計算出的閾值(不涉及優化疊代過程)刪除不太重要的特性。
為了測試 selectfrommodel 的有效性,我決定在這個例子中使用一個 ExtraTreesClassifier。
ExtratreesClassifier(極端隨機樹)是基於樹的集成分類器,與隨機森林方法相比,它可以產生更少的方差(因此減少了過擬合的風險)。隨機森林和極隨機樹的主要區別在於極隨機樹中節點的採樣不需要替換。
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.feature_selection import SelectFromModel
model = ExtraTreesClassifier
start = time.process_time
model = model.fit(X_Train,Y_Train)
model = SelectFromModel(model, prefit=True)
print(time.process_time - start)
Selected_X = model.transform(X_Train)
start = time.process_time
trainedforest = RandomForestClassifier(n_estimators=700).fit(Selected_X, Y_Train)
print(time.process_time - start)
Selected_X_Test = model.transform(X_Test)
predictionforest = trainedforest.predict(Selected_X_Test)
print(confusion_matrix(Y_Test,predictionforest))
print(classification_report(Y_Test,predictionforest))
6、相關矩陣分析
為了減少數據集中的特徵數量,另一種可能的方法是檢查特徵與標籤的相關性。
使用皮爾遜相關,我們的返回係數值將在-1 和 1 之間變化:
如果兩個特徵之間的相關性為 0,則意味著更改這兩個特徵中的任何一個都不會影響另一個。
如果兩個特徵之間的相關性大於 0,這意味著增加一個特徵中的值也會增加另一個特徵中的值(相關係數越接近 1,兩個不同特徵之間的這種聯繫就越強)。
如果兩個特徵之間的相關性小於 0,這意味著增加一個特徵中的值將使減少另一個特徵中的值(相關性係數越接近-1,兩個不同特徵之間的這種關係將越強)。
在這種情況下,我們將只考慮與輸出變量至少 0.5 相關的特性。
Numeric_df = pd.DataFrame(X)
Numeric_df['Y'] = Y
corr= Numeric_df.corr
corr_y = abs(corr["Y"])
highest_corr = corr_y[corr_y >0.5]
highest_corr.sort_values(ascending=True)
我們現在可以通過創建一個相關矩陣來更仔細地研究不同相關特徵之間的關係。
figure(num=None, figsize=(12, 10), dpi=80, facecolor='w', edgecolor='k')
corr2 = Numeric_df[['bruises_f' , 'bruises_t' , 'gill-color_b' , 'gill-size_b' , 'gill-size_n' , 'ring-type_p' , 'stalk-surface-below-ring_k' , 'stalk-surface-above-ring_k' , 'odor_f', 'odor_n']].corr
sns.heatmap(corr2, annot=True, fmt=".2g")
圖 6:最高相關特徵的相關矩陣
在這項分析中,另一個可能要控制的方面是檢查所選變量是否彼此高度相關。如果是的話,我們就只需要保留其中一個相關的,去掉其他的。
最後,我們現在可以只選擇與 y 相關度最高的特徵,訓練/測試一個支持向量機模型來評估該方法的結果。
7、單變量選擇
單變量特徵選擇是一種統計方法,用於選擇與我們對應標籤關係最密切的特徵。使用 selectkbest 方法,我們可以決定使用哪些指標來評估我們的特徵,以及我們希望保留的 k 個最佳特徵的數量。根據我們的需要,提供不同類型的評分函數:
Classification = chi2, f_classif, mutual_info_classif
Regression = f_regression, mutual_info_regression
在本例中,我們將使用 chi2(圖 7)。
圖 7:卡方公式 [4]
卡方(chi-squared,chi2)可以將非負值作為輸入,因此,首先,我們在 0 到 1 之間的範圍內縮放輸入數據。
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
min_max_scaler = preprocessing.MinMaxScaler
Scaled_X = min_max_scaler.fit_transform(X2)
X_new = SelectKBest(chi2, k=2).fit_transform(Scaled_X, Y)
X_Train3, X_Test3, Y_Train3, Y_Test3 = train_test_split(X_new, Y, test_size = 0.30, random_state = 101)
start = time.process_time
trainedforest = RandomForestClassifier(n_estimators=700).fit(X_Train3,Y_Train3)
print(time.process_time - start)
predictionforest = trainedforest.predict(X_Test3)
print(confusion_matrix(Y_Test3,predictionforest))
print(classification_report(Y_Test3,predictionforest))
8、套索回歸
當將正則化應用於機器學習模型時,我們在模型參數上加上一個懲罰,以避免我們的模型試圖太接近我們的輸入數據。通過這種方式,我們可以使我們的模型不那麼複雜,並且我們可以避免過度擬合(使我們的模型不僅學習關鍵的數據特徵,而且學習它的內在噪聲)。
其中一種可能的正則化方法是套索回歸。當使用套索回歸時,如果輸入特徵的係數對我們的機器學習模型訓練沒有積極的貢獻,則它們會縮小。這樣,一些特徵可能會被自動丟棄,即將它們的係數指定為零。
from sklearn.linear_model import LassoCV
regr = LassoCV(cv=5, random_state=101)
regr.fit(X_Train,Y_Train)
print("LassoCV Best Alpha Scored: ", regr.alpha_)
print("LassoCV Model Accuracy: ", regr.score(X_Test, Y_Test))
model_coef = pd.Series(regr.coef_, index = list(X.columns[:-1]))
print("Variables Eliminated: ", str(sum(model_coef == 0)))
print("Variables Kept: ", str(sum(model_coef != 0)))
一旦訓練了我們的模型,我們就可以再次創建一個特徵重要性圖來了解哪些特徵被我們的模型認為是最重要的(圖 8)。這是非常有用的,尤其是在試圖理解我們的模型是如何決定做出預測的時候,因此使我們的模型更易於解釋。
figure(num=None, figsize=(12, 10), dpi=80, facecolor='w', edgecolor='k')
top_coef = model_coef.sort_values
top_coef[top_coef != 0].plot(kind = "barh")
plt.title("Most Important Features Identified using Lasso (!0)")
圖 8:套索特徵重要性圖
招聘
1
論文內容運營
AI研習社是一個服務AI學生、學者、從業者的UGC內容平台,目標是從教學課程、技術經驗分享、學術見解討論、比賽和工作機會等角度提供資訊,也是用戶輸出觀點、互相交流、打造個人品牌的土壤。
工作內容:
1. AI研習社社區論文板塊運營
2. 聯繫、維護外部兼職稿源
3. 參與多樣化內容輸出、活動策劃
4. 參與社區產品的長期維護和改進
任職要求:
1. 有一定IT、計算機科學知識見聞
2. 熱情友善,善於溝通
3. 英語能力是加分項
簡歷投遞地址:yangxiaofan@leiphone.com
招聘
2
論文內容編輯(可招實習生)
AI研習社是一個服務AI學生、學者、從業者的UGC內容平台,目標是從教學課程、技術經驗分享、學術見解討論、比賽和工作機會等角度提供資訊,也是用戶輸出觀點、互相交流、打造個人品牌的土壤。
工作內容:
1. 關注、了解人工智慧相關領域學術研究動向,形成兼具專業度和傳播力的報道內容(發表在雷鋒網、公眾號以及AI研習社社區)
2. 採訪高校學術青年領袖,輸出人工智慧領域的深度觀點;
3. 解讀國內外學術熱點,深入剖析學術動態
任職要求:
1. 理工科背景,有一定計算機科學知識
2. 英語好,能閱讀英文科技網站&博客
3. 樂於鑽研,認真嚴謹;有文字功底更佳
簡歷投遞地址:yangxiaofan@leiphone.com
招聘
3
兼職外翻
AI研習社是一個服務AI學生、學者、從業者的UGC內容平台,目標是從教學課程、技術經驗分享、學術見解討論、比賽和工作機會等角度提供資訊,也是用戶輸出觀點、互相交流、打造個人品牌的土壤。
工作內容:
1. 翻譯一些人工智慧相關領域的學術動態、技術博客等(文章發表在雷鋒網、公眾號以及AI研習社社區)
2.無需坐班,工作時間、地點自由
任職要求:
1.英文讀寫能力較強,能閱讀英文科技網站&博客
2.具備一定的計算機科學知識,能看懂相關的專業詞彙
3.認真嚴謹,做事不拖拉,能夠按時完成派下來的外翻任務
簡歷投遞地址:xinglijuan@leiphone.com