Python中單線程、多線程和多進程的效率對比實驗

2019-10-30     科技i關注

對比實驗

資料顯示,如果多線程的進程是CPU密集型的,那多線程並不能有多少效率上的提升,相反還可能會因為線程的頻繁切換,導致效率下降,推薦使用多進程;如果是IO密集型,多線程進程可以利用IO阻塞等待時的空閒時間執行其他線程,提升效率。所以我們根據實驗對比不同場景的效率

| 作業系統 | CPU | 內存 | 硬碟 |

|-----------|-------|------|--------|

| Windows 10 | 雙核 |8GB|機械硬碟|

(1)引入所需要的模塊

import requests

import time

from threading import Thread

from multiprocessing import Process

(2)定義CPU密集的計算函數

def count(x, y):

# 使程序完成150萬計算

c = 0

while c < 500000:

c += 1

x += x

y += y

(3)定義IO密集的文件讀寫函數

def write():

f = open("test.txt", "w")

for x in range(5000000):

f.write("testwrite\\n")

f.close()

def read():

f = open("test.txt", "r")

lines = f.readlines()

f.close()

(4) 定義網絡請求函數

_head = {

'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48.0.2564.116 Safari/537.36'}

url = "http://www.tieba.com"

def http_request():

try:

webPage = requests.get(url, headers=_head)

html = webPage.text

return {"context": html}

except Exception as e:

return {"error": e}

(5)測試線性執行IO密集操作、CPU密集操作所需時間、網絡請求密集型操作所需時間

# CPU密集操作

t = time.time()

for x in range(10):

count(1, 1)

print("Line cpu", time.time() - t)

# IO密集操作

t = time.time()

for x in range(10):

write()

read()

print("Line IO", time.time() - t)

# 網絡請求密集型操作

t = time.time()

for x in range(10):

http_request()

print("Line Http Request", time.time() - t)

輸出

CPU密集:95.6059999466、91.57099986076355 92.52800011634827、 99.96799993515015

IO密集:24.25、21.76699995994568、21.769999980926514、22.060999870300293

網絡請求密集型: 4.519999980926514、8.563999891281128、4.371000051498413、4.522000074386597、14.671000003814697

(6)測試多線程並發執行CPU密集操作所需時間

counts = []

t = time.time()

for x in range(10):

thread = Thread(target=count, args=(1,1))

counts.append(thread)

thread.start()

e = counts.__len__()

while True:

for th in counts:

if not th.is_alive():

e -= 1

if e <= 0:

break

print(time.time() - t)

Output: 99.9240000248 、101.26400017738342、102.32200002670288

(7)測試多線程並發執行IO密集操作所需時間

def io():

write()

read()

t = time.time()

ios = []

t = time.time()

for x in range(10):

thread = Thread(target=count, args=(1,1))

ios.append(thread)

thread.start()

e = ios.__len__()

while True:

for th in ios:

if not th.is_alive():

e -= 1

if e <= 0:

break

print(time.time() - t)

Output: 25.69700002670288、24.02400016784668

(8)測試多線程並發執行網絡密集操作所需時間

t = time.time()

ios = []

t = time.time()

for x in range(10):

thread = Thread(target=http_request)

ios.append(thread)

thread.start()

e = ios.__len__()

while True:

for th in ios:

if not th.is_alive():

e -= 1

if e <= 0:

break

print("Thread Http Request", time.time() - t)

Output: 0.7419998645782471、0.3839998245239258、0.3900001049041748

(9)測試多進程並發執行CPU密集操作所需時間

counts = []

t = time.time()

for x in range(10):

process = Process(target=count, args=(1,1))

counts.append(process)

process.start()

e = counts.__len__()

while True:

for th in counts:

if not th.is_alive():

e -= 1

if e <= 0:

break

print("Multiprocess cpu", time.time() - t)

Output: 54.342000007629395、53.437999963760376

(10)測試多進程並發執行IO密集型操作

t = time.time()

ios = []

t = time.time()

for x in range(10):

process = Process(target=io)

ios.append(process)

process.start()

e = ios.__len__()

while True:

for th in ios:

if not th.is_alive():

e -= 1

if e <= 0:

break

print("Multiprocess IO", time.time() - t)

Output: 12.509000062942505、13.059000015258789

(11)測試多進程並發執行Http請求密集型操作

t = time.time()

httprs = []

t = time.time()

for x in range(10):

process = Process(target=http_request)

ios.append(process)

process.start()

e = httprs.__len__()

while True:

for th in httprs:

if not th.is_alive():

e -= 1

if e <= 0:

break

print("Multiprocess Http Request", time.time() - t)

Output: 0.5329999923706055、0.4760000705718994

實驗結果

通過上面的結果,我們可以看到:

多線程在IO密集型的操作下似乎也沒有很大的優勢(也許IO操作的任務再繁重一些就能體現出優勢),在CPU密集型的操作下明顯地比單線程線性執行性能更差,但是對於網絡請求這種忙等阻塞線程的操作,多線程的優勢便非常顯著了

多進程無論是在CPU密集型還是IO密集型以及網絡請求密集型(經常發生線程阻塞的操作)中,都能體現出性能的優勢。不過在類似網絡請求密集型的操作上,與多線程相差無幾,但卻更占用CPU等資源,所以對於這種情況下,我們可以選擇多線程來執行

更多技巧請《轉發 + 關注》哦!

文章來源: https://twgreatdaily.com/zh-cn/0B-oGm4BMH2_cNUgBa-I.html